If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+1.5t-57=0
a = 4.9; b = 1.5; c = -57;
Δ = b2-4ac
Δ = 1.52-4·4.9·(-57)
Δ = 1119.45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1.5)-\sqrt{1119.45}}{2*4.9}=\frac{-1.5-\sqrt{1119.45}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1.5)+\sqrt{1119.45}}{2*4.9}=\frac{-1.5+\sqrt{1119.45}}{9.8} $
| X3+6x2+12x+16=0 | | 11=-3v+2 | | B(10b+7)=12 | | 10^(6x)=19 | | 3b=4b-9-7b | | 5x(x+6)=90 | | 2w+6/7=w+2/7-2 | | (13x+15)(6x+32)=180 | | n/9=-1/3 | | 6y-9+2y-6=8y+17-4y | | 16p^2-24p-9=0 | | 27+2y=5y | | 9+2y-6=7y+18-2y | | -11/n=-187 | | -6v+21=-9(v+1) | | p/20=8 | | -6=p/2 | | -4(x-5)=-9x+15 | | w-1,129=2,329 | | -4x-2=2(x-4) | | -4x-2=2x-8 | | z-1092.8=1,200 | | z-1,823=2,312 | | -190=10x | | 20=-4n-2 | | 7-2z=2-2z | | -3v/2=18 | | |x+8|-2=13 | | 3x=81=4 | | 3x=81=27 | | (6)(3)/9=4x/10 | | -14=2/9x |